This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159502 #12 Sep 08 2022 08:45:43 %S A159502 1,18,-14,-12420,-209364,13023288,588244344,-15822829872, %T A159502 -1676597055600,12606184973088,5327119572650784,53279247098676672, %U A159502 -18847204123339434816,-555350300452342408320,72818309509811313231744,3938647192917087914341632,-298293179742235775626792704 %N A159502 Numerator of Hermite(n, 9/13). %H A159502 G. C. Greubel, <a href="/A159502/b159502.txt">Table of n, a(n) for n = 0..422</a> %F A159502 From _G. C. Greubel_, Jun 11 2018: (Start) %F A159502 a(n) = 13^n * Hermite(n,9/13). %F A159502 E.g.f.: exp(18*x-169*x^2). %F A159502 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(18/13)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159502 Numerator[Table[HermiteH[n,9/13],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 14 2011 *) %o A159502 (PARI) a(n)=numerator(polhermite(n,9/13)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159502 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(18/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018 %Y A159502 Cf. A159280, A159488. %K A159502 sign,frac %O A159502 0,2 %A A159502 _N. J. A. Sloane_, Nov 12 2009