This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159504 #12 Sep 08 2022 08:45:43 %S A159504 1,20,62,-12280,-308468,10433200,729974920,-6559031200,-1858301284720, %T A159504 -19430405329600,5264344401526240,170961658044572800, %U A159504 -16153599323983104320,-1016492471508449363200,50649065999412773118080,5823023695166237849024000,-140330290713698002728185600 %N A159504 Numerator of Hermite(n, 10/13). %H A159504 G. C. Greubel, <a href="/A159504/b159504.txt">Table of n, a(n) for n = 0..422</a> %F A159504 From _G. C. Greubel_, Jun 11 2018: (Start) %F A159504 a(n) = 13^n * Hermite(n,10/13). %F A159504 E.g.f.: exp(20*x-169*x^2). %F A159504 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(20/13)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159504 Numerator[Table[HermiteH[n,10/13],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 14 2011 *) %o A159504 (PARI) a(n)=numerator(polhermite(n,10/13)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159504 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(20/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018 %Y A159504 Cf. A159280, A159488. %K A159504 sign,frac %O A159504 0,2 %A A159504 _N. J. A. Sloane_, Nov 12 2009