This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159505 #12 Sep 08 2022 08:45:43 %S A159505 1,22,146,-11660,-404564,6863912,834719224,4443809392,-1877181877360, %T A159505 -53314061897888,4537477909175584,280026043216724288, %U A159505 -10709769915546886976,-1371400569429065225600,16887916481473586409344,6861001657130755548544768,65320299895805538972610816 %N A159505 Numerator of Hermite(n, 11/13). %H A159505 G. C. Greubel, <a href="/A159505/b159505.txt">Table of n, a(n) for n = 0..422</a> %F A159505 From _G. C. Greubel_, Jun 11 2018: (Start) %F A159505 a(n) = 13^n * Hermite(n,11/13). %F A159505 E.g.f.: exp(22*x-169*x^2). %F A159505 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(22/13)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159505 Numerator[Table[HermiteH[n,11/13],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 14 2011 *) %o A159505 (PARI) a(n)=numerator(polhermite(n,11/13)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159505 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(22/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018 %Y A159505 Cf. A159280, A159488. %K A159505 sign,frac %O A159505 0,2 %A A159505 _N. J. A. Sloane_, Nov 12 2009