cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159506 Numerator of Hermite(n, 12/13).

This page as a plain text file.
%I A159506 #12 Sep 08 2022 08:45:43
%S A159506 1,24,238,-10512,-493620,2365344,890986056,16586747712,-1709991063408,
%T A159506 -85890351335040,3140424382846176,365679572700743424,
%U A159506 -2899788110604240192,-1552791261528717092352,-24525321318694178812800,6759200537905228989502464,286564191995504982328955136
%N A159506 Numerator of Hermite(n, 12/13).
%H A159506 G. C. Greubel, <a href="/A159506/b159506.txt">Table of n, a(n) for n = 0..422</a>
%F A159506 From _G. C. Greubel_, Jun 11 2018: (Start)
%F A159506 a(n) = 13^n * Hermite(n,12/13).
%F A159506 E.g.f.: exp(24*x-169*x^2).
%F A159506 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(24/13)^(n-2*k)/(k!*(n-2*k)!)). (End)
%t A159506 Numerator[Table[HermiteH[n,12/13],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 14 2011 *)
%o A159506 (PARI) a(n)=numerator(polhermite(n,12/13)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o A159506 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(24/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018
%Y A159506 Cf. A159280, A159488.
%K A159506 sign,frac
%O A159506 0,2
%A A159506 _N. J. A. Sloane_, Nov 12 2009