This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159508 #12 Sep 08 2022 08:45:43 %S A159508 1,3,-89,-855,23601,405963,-10346601,-269746047,6288530145, %T A159508 230346491283,-4855444114041,-240305893799463,4513251073537809, %U A159508 296139484328781915,-4861463414700822921,-420887762743191256143,5883687931380635925441,677603075775465797408547 %N A159508 Numerator of Hermite(n, 3/14). %H A159508 G. C. Greubel, <a href="/A159508/b159508.txt">Table of n, a(n) for n = 0..450</a> %F A159508 From _G. C. Greubel_, Jun 02 2018: (Start) %F A159508 a(n) = 7^n * Hermite(n,3/14). %F A159508 E.g.f.: exp(3*x-49*x^2). %F A159508 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(3/7)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159508 Numerator[Table[HermiteH[n,3/14],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 14 2011 *) %o A159508 (PARI) a(n)=numerator(polhermite(n,3/14)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159508 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(3/7)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 10 2018 %Y A159508 Cf. A159507. %K A159508 sign,frac %O A159508 0,2 %A A159508 _N. J. A. Sloane_, Nov 12 2009