This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159509 #12 Sep 08 2022 08:45:43 %S A159509 1,5,-73,-1345,14737,600925,-4216505,-374426425,1020390305, %T A159509 298652268725,593277094615,-289712837877425,-2088116897382095, %U A159509 330261712856941325,4311569491549495655,-431561222581976019625,-8495813265487638710975,634208930681100205217125 %N A159509 Numerator of Hermite(n, 5/14). %H A159509 G. C. Greubel, <a href="/A159509/b159509.txt">Table of n, a(n) for n = 0..450</a> %F A159509 From _G. C. Greubel_, Jun 11 2018: (Start) %F A159509 a(n) = 7^n * Hermite(n,5/14). %F A159509 E.g.f.: exp(5*x-49*x^2). %F A159509 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(5/7)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159509 Numerator[Table[HermiteH[n,5/14],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 14 2011 *) %o A159509 (PARI) a(n)=numerator(polhermite(n,5/14)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159509 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(5/7)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018 %Y A159509 Cf. A159507. %K A159509 sign,frac %O A159509 0,2 %A A159509 _N. J. A. Sloane_, Nov 12 2009