cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159511 Numerator of Hermite(n, 11/14).

This page as a plain text file.
%I A159511 #12 Sep 08 2022 08:45:43
%S A159511 1,11,23,-1903,-27695,441331,18425191,-56825527,-13264761823,
%T A159511 -101361166885,10584547092151,215763961560961,-9036738188168207,
%U A159511 -353142538865540413,7628236524205351175,568422165089780309561,-4960863874594282822079
%N A159511 Numerator of Hermite(n, 11/14).
%H A159511 G. C. Greubel, <a href="/A159511/b159511.txt">Table of n, a(n) for n = 0..450</a>
%F A159511 From _G. C. Greubel_, Jun 11 2018: (Start)
%F A159511 a(n) = 7^n * Hermite(n,11/14).
%F A159511 E.g.f.: exp(11*x-49*x^2).
%F A159511 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(11/7)^(n-2*k)/(k!*(n-2*k)!)). (End)
%t A159511 Numerator[Table[HermiteH[n,11/14],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011 *)
%o A159511 (PARI) a(n)=numerator(polhermite(n,11/14)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o A159511 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(11/7)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018
%Y A159511 Cf. A159507, A159508, A159509.
%K A159511 sign,frac
%O A159511 0,2
%A A159511 _N. J. A. Sloane_, Nov 12 2009