This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159513 #14 Sep 08 2022 08:45:43 %S A159513 1,2,-446,-2692,596716,6039032,-1330532936,-18966452272,4153245843856, %T A159513 76585719866912,-16667474227882976,-377970687856869952, %U A159513 81748056052306991296,2204537826531711723392,-473817052252932475634816,-14836222411655648808639232,3168592657883982912917729536 %N A159513 Numerator of Hermite(n, 1/15). %H A159513 G. C. Greubel, <a href="/A159513/b159513.txt">Table of n, a(n) for n = 0..412</a> %F A159513 From _G. C. Greubel_, Jun 09 2018: (Start) %F A159513 a(n) = 15^n * Hermite(n,1/15). %F A159513 E.g.f.: exp(2*x-225*x^2). %F A159513 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/15)^(n-2k)/(k!*(n-2k)!)). (End) %t A159513 Numerator[Table[HermiteH[n,1/15],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011 *) %o A159513 (PARI) a(n)=numerator(polhermite(n,1/15)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159513 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(2/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 09 2018 %Y A159513 Cf. A159512. %K A159513 sign,frac %O A159513 0,2 %A A159513 _N. J. A. Sloane_, Nov 12 2009