cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159514 Numerator of Hermite(n, 2/15).

This page as a plain text file.
%I A159514 #12 Sep 08 2022 08:45:43
%S A159514 1,4,-434,-5336,564556,11863024,-1222798904,-36921360416,
%T A159514 3704131105936,147733421921344,-14410797291355424,-722443587811469696,
%U A159514 68443672240963470016,4174970063145790238464,-383695602357053138639744,-27837093807246691056882176,2478596940681121921590743296
%N A159514 Numerator of Hermite(n, 2/15).
%H A159514 G. C. Greubel, <a href="/A159514/b159514.txt">Table of n, a(n) for n = 0..412</a>
%F A159514 From _G. C. Greubel_, Jun 11 2018: (Start)
%F A159514 a(n) = 15^n * Hermite(n,2/15).
%F A159514 E.g.f.: exp(4*x-225*x^2).
%F A159514 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/15)^(n-2*k)/(k!*(n-2*k)!)). (End)
%t A159514 Numerator[Table[HermiteH[n,2/15],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011 *)
%o A159514 (PARI) a(n)=numerator(polhermite(n,2/15)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o A159514 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(4/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018
%Y A159514 Cf. A159513.
%K A159514 sign,frac
%O A159514 0,2
%A A159514 _N. J. A. Sloane_, Nov 12 2009