This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159514 #12 Sep 08 2022 08:45:43 %S A159514 1,4,-434,-5336,564556,11863024,-1222798904,-36921360416, %T A159514 3704131105936,147733421921344,-14410797291355424,-722443587811469696, %U A159514 68443672240963470016,4174970063145790238464,-383695602357053138639744,-27837093807246691056882176,2478596940681121921590743296 %N A159514 Numerator of Hermite(n, 2/15). %H A159514 G. C. Greubel, <a href="/A159514/b159514.txt">Table of n, a(n) for n = 0..412</a> %F A159514 From _G. C. Greubel_, Jun 11 2018: (Start) %F A159514 a(n) = 15^n * Hermite(n,2/15). %F A159514 E.g.f.: exp(4*x-225*x^2). %F A159514 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/15)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159514 Numerator[Table[HermiteH[n,2/15],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011 *) %o A159514 (PARI) a(n)=numerator(polhermite(n,2/15)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159514 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(4/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018 %Y A159514 Cf. A159513. %K A159514 sign,frac %O A159514 0,2 %A A159514 _N. J. A. Sloane_, Nov 12 2009