This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159515 #12 Sep 08 2022 08:45:43 %S A159515 1,8,-386,-10288,438796,22028768,-811060856,-65966160448, %T A159515 2027112412816,253695076915328,-6180244656582176,-1191069803371633408, %U A159515 21063652623108703936,6600286159191690034688,-70420078571652397748096,-42145163431480866400519168,138174222906806753595494656 %N A159515 Numerator of Hermite(n, 4/15). %H A159515 G. C. Greubel, <a href="/A159515/b159515.txt">Table of n, a(n) for n = 0..412</a> %F A159515 From _G. C. Greubel_, Jun 11 2018: (Start) %F A159515 a(n) = 15^n * Hermite(n,4/15). %F A159515 E.g.f.: exp(8*x-225*x^2). %F A159515 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/15)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159515 Numerator[Table[HermiteH[n,4/15],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011 *) %o A159515 (PARI) a(n)=numerator(polhermite(n,4/15)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159515 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(8/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018 %Y A159515 Cf. A159513, A159514. %K A159515 sign,frac %O A159515 0,2 %A A159515 _N. J. A. Sloane_, Nov 12 2009