This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159516 #12 Sep 08 2022 08:45:43 %S A159516 1,14,-254,-16156,116716,30714824,167396536,-80586473296, %T A159516 -1655509714544,266934167861984,10441892693970976, %U A159516 -1055017257663334336,-66457610442443011904,4766686645187803247744,455510634120920865106816,-23652976986990268349291776 %N A159516 Numerator of Hermite(n, 7/15). %H A159516 G. C. Greubel, <a href="/A159516/b159516.txt">Table of n, a(n) for n = 0..412</a> %F A159516 From _G. C. Greubel_, Jun 11 2018: (Start) %F A159516 a(n) = 15^n * Hermite(n,7/15). %F A159516 E.g.f.: exp(14*x-225*x^2). %F A159516 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(14/15)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159516 Numerator[Table[HermiteH[n,7/15],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011 *) %o A159516 (PARI) a(n)=numerator(polhermite(n,7/15)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159516 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(14/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018 %Y A159516 Cf. A159513, A159514, A159515. %K A159516 sign,frac %O A159516 0,2 %A A159516 _N. J. A. Sloane_, Nov 12 2009