This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159517 #12 Sep 08 2022 08:45:43 %S A159517 1,16,-194,-17504,-18164,31216576,540334216,-75639407744, %T A159517 -2912283304304,225705335009536,15406032742583776,-769177483661571584, %U A159517 -88566701814374836544,2736491182742489168896,561899064537972620484736,-8249509418670119836289024 %N A159517 Numerator of Hermite(n, 8/15). %H A159517 G. C. Greubel, <a href="/A159517/b159517.txt">Table of n, a(n) for n = 0..412</a> %F A159517 From _G. C. Greubel_, Jun 11 2018: (Start) %F A159517 a(n) = 15^n * Hermite(n,8/15). %F A159517 E.g.f.: exp(16*x-225*x^2). %F A159517 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(16/15)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159517 Numerator[Table[HermiteH[n,8/15],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011 *) %o A159517 (PARI) a(n)=numerator(polhermite(n,8/15)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159517 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(16/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018 %Y A159517 Cf. A159515, A159516. %K A159517 sign,frac %O A159517 0,2 %A A159517 _N. J. A. Sloane_, Nov 12 2009