This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159518 #12 Sep 08 2022 08:45:43 %S A159518 1,22,34,-19052,-465044,24062632,1575726904,-30303114512, %T A159518 -5630208266864,-14773369627808,22477329348987424,560981409002859328, %U A159518 -98921189279424843584,-5205565772762786930048,464166510283854022505344,43006727594650346154419968 %N A159518 Numerator of Hermite(n, 11/15). %H A159518 G. C. Greubel, <a href="/A159518/b159518.txt">Table of n, a(n) for n = 0..412</a> %F A159518 From _G. C. Greubel_, Jun 11 2018: (Start) %F A159518 a(n) = 15^n * Hermite(n,11/15). %F A159518 E.g.f.: exp(22*x-225*x^2). %F A159518 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(22/15)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159518 Numerator[Table[HermiteH[n,11/15],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011 *) %o A159518 (PARI) a(n)=numerator(polhermite(n,11/15)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159518 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(22/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018 %Y A159518 Cf. A159513, A159514. %K A159518 sign,frac %O A159518 0,2 %A A159518 _N. J. A. Sloane_, Nov 12 2009