This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159520 #21 Sep 08 2022 08:45:43 %S A159520 1,28,334,-15848,-894644,3476368,2110287304,49701850912, %T A159520 -5255753182064,-326087752380992,12155343320691424, %U A159520 1807744498693823872,-9552103473995480384,-10029279190218522359552,-224940012003245065821056,56886138562285829022188032 %N A159520 Numerator of Hermite(n, 14/15). %H A159520 Vincenzo Librandi, <a href="/A159520/b159520.txt">Table of n, a(n) for n = 0..200</a> %H A159520 DLMF <a href="https://dlmf.nist.gov/18.9">Digital library of mathematical functions</a>, Table 18.9.1 for H_n(x) %F A159520 D-finite with recurrence a(n) -28*a(n-1) +450*(n-1)*a(n-2)=0. [DLMF] - _R. J. Mathar_, Feb 16 2014 %F A159520 From _G. C. Greubel_, Jun 11 2018: (Start) %F A159520 a(n) = 15^n * Hermite(n,14/15). %F A159520 E.g.f.: exp(28*x-225*x^2). %F A159520 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(28/15)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A159520 Numerators of 1, 28/15, 334/225, -15848/3375, -894644/50625, 3476368/759375 %p A159520 A159520 := proc(n) %p A159520 orthopoly[H](n,14/15) ; %p A159520 numer(%) ; %p A159520 end proc: # _R. J. Mathar_, Feb 16 2014 %t A159520 Numerator[Table[HermiteH[n,14/15],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011 *) %o A159520 (PARI) a(n)=numerator(polhermite(n,14/15)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159520 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(28/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 11 2018 %Y A159520 Cf. A001024 (denominators). %K A159520 sign,frac %O A159520 0,2 %A A159520 _N. J. A. Sloane_, Nov 12 2009