This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159521 #11 Sep 08 2022 08:45:43 %S A159521 1,1,-127,-383,48385,244481,-30721919,-218483327,27308356097, %T A159521 251035282945,-31208190940799,-352533353110399,43588599491534593, %U A159521 585079829869107457,-71946349724044455295,-1120409404849485018239,137016582065315869148161 %N A159521 Numerator of Hermite(n, 1/16). %H A159521 G. C. Greubel, <a href="/A159521/b159521.txt">Table of n, a(n) for n = 0..450</a> %F A159521 From _G. C. Greubel_, Jun 09 2018: (Start) %F A159521 a(n) = 8^n * Hermite(n,1/16). %F A159521 E.g.f.: exp(2*x-64*x^2). %F A159521 a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/8)^(n-2k)/(k!*(n-2k)!). (End) %t A159521 Numerator[Table[HermiteH[n,1/16],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 28 2011 *) %o A159521 (PARI) a(n)=numerator(polhermite(n,1/16)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159521 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/8)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 09 2018 %Y A159521 Cf. A159513. %K A159521 sign,frac %O A159521 0,3 %A A159521 _N. J. A. Sloane_, Nov 12 2009