This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159522 #11 Sep 08 2022 08:45:43 %S A159522 1,3,-119,-1125,42321,702963,-24976551,-614805237,20534573985, %T A159522 691164284643,-21582336376791,-949437293473413,27539617738101489, %U A159522 1540954535989466835,-41203060308232477191,-2884999709417821999893,70454876663552890207041 %N A159522 Numerator of Hermite(n, 3/16). %H A159522 G. C. Greubel, <a href="/A159522/b159522.txt">Table of n, a(n) for n = 0..450</a> %F A159522 From _G. C. Greubel_, Jun 09 2018: (Start) %F A159522 a(n) = 16^n * Hermite(n,3/16). %F A159522 E.g.f.: exp(6*x-252*x^2). %F A159522 a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(3/8)^(n-2k)/(k!*(n-2k)!). (End) %t A159522 Numerator[Table[HermiteH[n,3/16],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2011 *) %o A159522 (PARI) a(n)=numerator(polhermite(n,3/16)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159522 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(3/8)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 09 2018 %Y A159522 Cf. A159521. %K A159522 sign,frac %O A159522 0,2 %A A159522 _N. J. A. Sloane_, Nov 12 2009