This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159529 #11 Sep 08 2022 08:45:43 %S A159529 1,2,-574,-3460,988396,9976312,-2836511816,-40270873648, %T A159529 11395985060240,209004489868832,-58863905303630816, %U A159529 -1325773762049110592,371605162396386506944,9938777138365404080000,-2772363635969717405017216,-85969311875592284625394432,23864454100106265332248473856 %N A159529 Numerator of Hermite(n, 1/17). %H A159529 G. C. Greubel, <a href="/A159529/b159529.txt">Table of n, a(n) for n = 0..404</a> %F A159529 From _G. C. Greubel_, Jun 09 2018: (Start) %F A159529 a(n) = 17^n * Hermite(n,1/17). %F A159529 E.g.f.: exp(2*x-289*x^2). %F A159529 a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/17)^(n-2k)/(k!*(n-2k)!). (End) %t A159529 Numerator[Table[HermiteH[n,1/17],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2011 *) %o A159529 (PARI) a(n)=numerator(polhermite(n,1/17)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159529 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(2/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 09 2018 %Y A159529 Cf. A159521. %K A159529 sign,frac %O A159529 0,2 %A A159529 _N. J. A. Sloane_, Nov 12 2009