This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159530 #19 Sep 06 2025 01:38:44 %S A159530 1,4,-562,-6872,947020,19676144,-2658183224,-78869600288, %T A159530 10439530923152,406451155424320,-52680635240539424, %U A159530 -2560010219314727296,324703437982090748608,19055044633095311519488,-2363601454465048638962560,-163647826988867455371547136 %N A159530 Numerator of Hermite(n, 2/17). %H A159530 G. C. Greubel, <a href="/A159530/b159530.txt">Table of n, a(n) for n = 0..404</a> %F A159530 From _G. C. Greubel_, Jun 02 2018: (Start) %F A159530 a(n) = 17^n * Hermite(n,2/17). %F A159530 E.g.f.: exp(4*x-289*x^2). %F A159530 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/17)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159530 Numerator[Table[HermiteH[n,2/17],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2011 *) %o A159530 (PARI) /* needs version >= 2.4 */ %o A159530 A159530(n)=numerator(polhermite(n,2/17)); /* _Joerg Arndt_, Apr 30 2011 */ %o A159530 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(4/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 09 2018 %Y A159530 The denominators are the powers of 17, A001026. %Y A159530 Cf. A159521, A159529. %K A159530 sign,frac,changed %O A159530 0,2 %A A159530 _N. J. A. Sloane_, Nov 12 2009