This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159531 #11 Sep 08 2022 08:45:43 %S A159531 1,6,-542,-10188,878700,28826856,-2366481864,-114170427792, %T A159531 8889763054992,581262636440160,-42756971593427424, %U A159531 -3616239868184689344,250151386181903425728,26583148042820425844352,-1720138627513899785854080,-225431665727586284647620864 %N A159531 Numerator of Hermite(n, 3/17). %H A159531 G. C. Greubel, <a href="/A159531/b159531.txt">Table of n, a(n) for n = 0..404</a> %F A159531 From _G. C. Greubel_, Jul 09 2018: (Start) %F A159531 a(n) = 17^n * Hermite(n, 3/17). %F A159531 E.g.f.: exp(6*x-289*x^2). %F A159531 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/17)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159531 Numerator[Table[HermiteH[n,3/17],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2011 *) %t A159531 Table[17^n*HermiteH[n, 3/17], {n,0,30}] (* _G. C. Greubel_, Jul 09 2018 *) %o A159531 (PARI) a(n)=numerator(polhermite(n,3/17)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159531 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(6/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 09 2018 %Y A159531 Cf. A159521, A159529, A159530. %K A159531 sign,frac %O A159531 0,2 %A A159531 _N. J. A. Sloane_, Nov 12 2009