This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159532 #11 Sep 08 2022 08:45:43 %S A159532 1,8,-514,-13360,784396,37163488,-1969596536,-144639748672, %T A159532 6811869595280,723309154621568,-29648872397674016, %U A159532 -4417917892894055168,153164187561258952384,31867992005603238264320,-895931769290473862098816,-265043245463665194931667968 %N A159532 Numerator of Hermite(n, 4/17). %H A159532 G. C. Greubel, <a href="/A159532/b159532.txt">Table of n, a(n) for n = 0..404</a> %F A159532 From _G. C. Greubel_, Jul 09 2018: (Start) %F A159532 a(n) = 17^n * Hermite(n, 4/17). %F A159532 E.g.f.: exp(8*x-289*x^2). %F A159532 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/17)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159532 Numerator[Table[HermiteH[n,4/17],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2011 *) %t A159532 Table[17^n*HermiteH[n, 417], {n,0,30}] (* _G. C. Greubel_, Jul 09 2018 *) %o A159532 (PARI) a(n)=numerator(polhermite(n,4/17)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159532 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(8/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 09 2018 %Y A159532 Cf. A159529, A159530. %K A159532 sign,frac %O A159532 0,2 %A A159532 _N. J. A. Sloane_, Nov 12 2009