This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159533 #11 Sep 08 2022 08:45:43 %S A159533 1,10,-478,-16340,665452,44432600,-1478830280,-168880559600, %T A159533 4294541716880,823849124759200,-14101714763617760, %U A159533 -4902865088744353600,40630051579638182080,34412572771327218390400,38831520143870883754880,-278078223664141142377568000 %N A159533 Numerator of Hermite(n, 5/17). %H A159533 G. C. Greubel, <a href="/A159533/b159533.txt">Table of n, a(n) for n = 0..404</a> %F A159533 From _G. C. Greubel_, Jul 09 2018: (Start) %F A159533 a(n) = 17^n * Hermite(n, 5/17). %F A159533 E.g.f.: exp(10*x-289*x^2). %F A159533 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(10/17)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159533 Numerator[Table[HermiteH[n,5/17],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2011 *) %t A159533 Table[17^n*HermiteH[n, 5/17], {n,0,30}] (* _G. C. Greubel_, Jul 09 2018 *) %o A159533 (PARI) a(n)=numerator(polhermite(n,5/17)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159533 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(10/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 09 2018 %Y A159533 Cf. A159529, A159530. %K A159533 sign,frac %O A159533 0,2 %A A159533 _N. J. A. Sloane_, Nov 12 2009