This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159534 #11 Sep 08 2022 08:45:43 %S A159534 1,12,-434,-19080,523596,50396112,-908439096,-185674985568, %T A159534 1447444755600,875930470333632,2981558025372384,-5027099422223924352, %U A159534 -79281938992004709696,33916578324641082789120,1002723429481616382125184,-262420270649216245344056832 %N A159534 Numerator of Hermite(n, 6/17). %H A159534 G. C. Greubel, <a href="/A159534/b159534.txt">Table of n, a(n) for n = 0..404</a> %F A159534 From _G. C. Greubel_, Jul 09 2018: (Start) %F A159534 a(n) = 17^n * Hermite(n, 6/17). %F A159534 E.g.f.: exp(12*x-289*x^2). %F A159534 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(12/17)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159534 Numerator[Table[HermiteH[n,6/17],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2011 *) %t A159534 Table[17^n*HermiteH[n, 6/17], {n,0,30}] (* _G. C. Greubel_, Jul 09 2018 *) %o A159534 (PARI) a(n)=numerator(polhermite(n,6/17)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159534 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(12/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 09 2018 %Y A159534 Cf. A159529, A159530. %K A159534 sign,frac %O A159534 0,2 %A A159534 _N. J. A. Sloane_, Nov 12 2009