This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159537 #12 Sep 08 2022 08:45:43 %S A159537 1,18,-254,-25380,-16404,58383288,1098306744,-182703721392, %T A159537 -7732416071280,705638518433568,52925521734602784, %U A159537 -3125931245323172928,-392767229604421613376,14611648984681938387840,3214262644971898893888384,-60380735974552065344410368 %N A159537 Numerator of Hermite(n, 9/17). %H A159537 G. C. Greubel, <a href="/A159537/b159537.txt">Table of n, a(n) for n = 0..404</a> %F A159537 From _G. C. Greubel_, Jul 02 2018: (Start) %F A159537 a(n) = 17^n * Hermite(n, 9/17). %F A159537 E.g.f.: exp(18*x-289*x^2). %F A159537 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(18/17)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159537 Numerator[Table[HermiteH[n,9/17],{n,0,30}]] (* _Vladimir Joseph Stephan Orlovsky_, May 08 2011 *) %t A159537 Table[17^n*HermiteH[n, 9/17], {n,0,50}] (* _G. C. Greubel_, Jul 02 2018 *) %o A159537 (PARI) a(n)=numerator(polhermite(n,9/17)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159537 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(18/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 02 2018 %Y A159537 Cf. A159534, A159535, A159536. %K A159537 sign,frac %O A159537 0,2 %A A159537 _N. J. A. Sloane_, Nov 12 2009