This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159574 #11 Apr 18 2024 12:53:46 %S A159574 313,337,365,1513,1685,1877,8765,9773,10897,51077,56953,63505,297697, %T A159574 331945,370133,1735105,1934717,2157293,10112933,11276357,12573625, %U A159574 58942493,65723425,73284457,343542025,383064193,427133117,2002309657 %N A159574 Positive numbers y such that y^2 is of the form x^2+(x+337)^2 with integer x. %C A159574 (-25,a(1)) and (A129999(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+337)^2 = y^2. %H A159574 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,6,0,0,-1). %F A159574 a(n) = 6*a(n-3)-a(n-6)for n > 6; a(1)=313, a(2)=337, a(3)=365, a(4)=1513, a(5)=1685, a(6)=1877. %F A159574 G.f.: x*(1-x)*(313+650*x+1015*x^2+650*x^3+313*x^4) / (1-6*x^3+x^6). %F A159574 a(3*k-1) = 337*A001653(k) for k >= 1. %F A159574 Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2). %F A159574 Limit_{n -> oo} a(n)/a(n-1) = (339+26*sqrt(2))/337 for n mod 3 = {0, 2}. %F A159574 Limit_{n -> oo} a(n)/a(n-1) = (278307+179662*sqrt(2))/337^2 for n mod 3 = 1. %e A159574 (-25, a(1)) = (-25, 313) is a solution: (-25)^2+(-25+337)^2 = 625+97344 = 97969 = 313^2. %e A159574 (A129993(1), a(2)) = (0, 337) is a solution: 0^2+(0+337)^2 = 113569 = 337^2. %e A159574 (A129993(3), a(4)) = (888, 1513) is a solution: 888^2+(888+337)^2 = 788544+1500625 = 2289169 = 1513^2. %o A159574 (PARI) {forstep(n=-28, 50000000, [3, 1], if(issquare(2*n^2+674*n+113569, &k), print1(k, ",")))} %Y A159574 Cf. A129999, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159575 (decimal expansion of (339+26*sqrt(2))/337), A159576(decimal expansion of (278307+179662*sqrt(2))/337^2). %K A159574 nonn,easy %O A159574 1,1 %A A159574 _Klaus Brockhaus_, Apr 16 2009