cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159606 G.f. satisfies: A(x) = 1 + x*d/dx log(1 + x/A(x)).

This page as a plain text file.
%I A159606 #11 Nov 17 2017 12:04:27
%S A159606 1,1,-3,16,-115,996,-9870,108816,-1312227,17116900,-239641798,
%T A159606 3580451040,-56837970358,955277226736,-16948413979080,316615678469856,
%U A159606 -6213840704926947,127857371413743540,-2753054722318717950
%N A159606 G.f. satisfies: A(x) = 1 + x*d/dx log(1 + x/A(x)).
%H A159606 Vaclav Kotesovec, <a href="/A159606/b159606.txt">Table of n, a(n) for n = 0..400</a>
%F A159606 G.f. satisfies: x^2*A'(x) = 2*x*A(x) + (1-x)*A(x)^2 - A(x)^3.
%F A159606 a(n) ~ -(-1)^n * c * n! * n^3, where c = A238223 / exp(1) = 0.080179614624692622... - _Vaclav Kotesovec_, Nov 17 2017
%e A159606 G.f.: A(x) = 1 + x - 3*x^2 + 16*x^3 - 115*x^4 + 996*x^5 -+...
%e A159606 1/A(x) = 1 - x + 4*x^2 - 23*x^3 + 166*x^4 - 1410*x^5 + 13602*x^6 -+...
%e A159606 log(1+x/A(x)) = x - 3*x^2/2 + 16*x^3/3 - 115*x^4/4 + 996*x^5/5 -+...
%o A159606 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+x*deriv(log(1+x*Ser(A)^-1)+x*O(x^n)));polcoeff(A,n)}
%Y A159606 Cf. variants: A159607, A159608.
%Y A159606 Cf. A238223.
%K A159606 sign
%O A159606 0,3
%A A159606 _Paul D. Hanna_, May 16 2009