cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159611 Indices of the Fermat primes in the sequence of primes.

This page as a plain text file.
%I A159611 #38 Sep 27 2024 07:22:06
%S A159611 2,3,7,55,6543
%N A159611 Indices of the Fermat primes in the sequence of primes.
%C A159611 If it exists, a(6) >= primepi(2^(2^33)+1) which has more than 2*10^9 decimal digits. - _Amiram Eldar_, Sep 27 2024
%H A159611 <a href="/index/Pri">Index entries for sequences that are related to primes dividing Fermat numbers</a>.
%F A159611 A098006(a(n)) = 0. - _Reinhard Zumkeller_, Mar 26 2013
%F A159611 a(n) = A000720(A019434(n)). - _Michel Marcus_, Apr 29 2021
%e A159611 3, the 1st Fermat prime is the 2nd prime, so a(1) = 2.
%e A159611 17, the 3rd Fermat prime is the 7th prime, so a(3) = 7.
%t A159611 PrimePi/@{3,5,17,257,65537} (* _Harvey P. Dale_, Aug 07 2022 *)
%o A159611 (Haskell)
%o A159611 import Data.List (elemIndices)
%o A159611 a159611 n = a159611_list !! (n-1)
%o A159611 a159611_list = map (+ 2) $ elemIndices 0 a098006_list
%o A159611 -- _Reinhard Zumkeller_, Mar 26 2013
%o A159611 (PARI) for(i=0, 10, isprime(f=2^2^i+1) & print1(primepi(f), ", ")) \\ _Michel Marcus_, Apr 28 2016
%o A159611 (PARI) a152155(n) = centerlift(Mod(3, 2^(2^n)+1)^(2^(2^n-1)))
%o A159611 print1(2, ", "); for(x=0, oo, if(a152155(x)==-1, print1(primepi(2^(2^x)+1), ", "))) \\ _Felix Fröhlich_, Apr 30 2021
%Y A159611 Cf. A000040 (primes), A000720, A019434 (Fermat primes).
%Y A159611 Cf. A098006.
%K A159611 nonn,hard
%O A159611 1,1
%A A159611 _Walter Nissen_, Apr 16 2009
%E A159611 Name edited by _Felix Fröhlich_, Apr 30 2021