cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159632 Dimension of space of cusp forms of weight 3/2, level 4*n and trivial character.

This page as a plain text file.
%I A159632 #13 Aug 04 2025 20:54:01
%S A159632 0,0,0,0,0,0,1,0,0,1,2,0,2,2,3,1,3,2,4,2,5,4,5,2,2,5,5,4,6,7,7,3,9,7,
%T A159632 9,4,8,8,11,6,9,11,10,8,10,10,11,7,6,8,15,10,12,11,15,10,17,13,14,14,
%U A159632 14,14,18,8,17,19,16,14,21,19,17,12,17,17,20,16,21,23,19,15,15,19,20,22,23
%N A159632 Dimension of space of cusp forms of weight 3/2, level 4*n and trivial character.
%C A159632 Contribution from _Steven Finch_, Apr 22 2009: (Start)
%C A159632 Denote dim{M_k(Gamma_0(N))} by m(k,N) and dim{S_k(Gamma_0(N))} by s(k,N).
%C A159632 We have
%C A159632 m(3/2,N)-s(3/2,N)+m(1/2,N)-s(1/2,N) = m(5/2,N)-s(5/2,N)
%C A159632 hence
%C A159632 s(3/2,N)+s(1/2,N) = m(1/2,N)+m(3/2,N)-(m(5/2,N)-s(5/2,N))
%C A159632 = A159631(N/4)+A159630(N/4)-A159633(N/4)
%C A159632 where N is any positive multiple of 4. (End)
%H A159632 H. Cohen and J. Oesterle, <a href="http://dx.doi.org/10.1007/BFb0065297">Dimensions des espaces de formes modulaires</a>, Modular Functions of One Variable. VI, Proc. 1976 Bonn conf., Lect. Notes in Math. 627, Springer-Verlag, 1977, pp. 69-78.
%H A159632 <a href="http://magma.maths.usyd.edu.au/calc/">MAGMA Calculator</a>.
%o A159632 (Magma) [[4*n,Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,3/2)))] : n in [1..90]];
%Y A159632 Cf. A159630, A159631, A159633, A159635, A159636 [From _Steven Finch_, Apr 22 2009]
%K A159632 nonn
%O A159632 1,11
%A A159632 _Steven Finch_, Apr 17 2009