This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159650 #21 Sep 08 2022 08:45:44 %S A159650 1,24,-146,-38160,-599604,95815584,4464144456,-307933642944, %T A159650 -29952193511280,1059772077373824,220063883293269216, %U A159650 -2370021199600548096,-1804627869905557267776,-22777205204394225722880,16391584262028099097996416,623630012494691211958785024 %N A159650 Numerator of Hermite(n, 12/19). %H A159650 Vincenzo Librandi, <a href="/A159650/b159650.txt">Table of n, a(n) for n = 0..200</a> %H A159650 DLMF <a href="https://dlmf.nist.gov/18.9">Digital library of mathematical functions</a>, Table 18.9.1 for H_n(x) %F A159650 D-finite with recurrence a(n) - 24*a(n-1) + 722*(n-1)*a(n-2) = 0. [DLMF] - _R. J. Mathar_, Feb 16 2014 %F A159650 From _G. C. Greubel_, Jul 11 2018: (Start) %F A159650 a(n) = 19^n * Hermite(n, 12/19). %F A159650 E.g.f.: exp(24*x - 361*x^2). %F A159650 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(24/19)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A159650 Numerator of 1, 24/19, -146/361, -38160/6859, -599604/130321, 95815584/2476099, ... %p A159650 A159650 := proc(n) %p A159650 orthopoly[H](n,12/19) ; %p A159650 numer(%) ; %p A159650 end proc: # _R. J. Mathar_, Feb 16 2014 %t A159650 Numerator[Table[HermiteH[n, 12/19], {n, 0, 30}]] (* _Vladimir Joseph Stephan Orlovsky_, Jun 16 2011 *) %t A159650 Table[19^n*HermiteH[n, 12/19], {n,0,50}] (* _G. C. Greubel_, Jul 11 2018 *) %o A159650 (PARI) a(n)=numerator(polhermite(n,12/19)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159650 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(24/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 11 2018 %Y A159650 Cf. A001029 (denominators). %K A159650 sign,frac %O A159650 0,2 %A A159650 _N. J. A. Sloane_, Nov 12 2009