cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159661 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j) with positive integer elements. the solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j); 13*n(j) + 1 = b(j)*b(j); with integer numbers.

This page as a plain text file.
%I A159661 #17 Dec 26 2023 12:23:39
%S A159661 1,25,599,14351,343825,8237449,197354951,4728281375,113281398049,
%T A159661 2714025271801,65023325125175,1557845777732399,37323275340452401,
%U A159661 894200762393125225,21423495022094552999,513269679767876146751,12297048819406932969025,294615901985998515109849
%N A159661 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j) with positive integer elements. the solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j); 13*n(j) + 1 = b(j)*b(j); with integer numbers.
%H A159661 Colin Barker, <a href="/A159661/b159661.txt">Table of n, a(n) for n = 1..725</a>
%H A159661 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (24,-1).
%F A159661 The a(j) recurrence is a(1)=1; a(2)=23; a(t+2) = 24*a(t+1) - a(t); resulting in a(j) terms 1, 23, 551, 13201, 316273, 7577351, 181540151, 4349386273.
%F A159661 The b(j) recurrence is b(1)=1; b(2)=23; b(t+2) = 24*b(t+1) - b(t); resulting in b(j) terms 1, 25, 599, 14351, 343825, 8237449 as listed above.
%F A159661 The n(j) recurrence is n(0)=n(1)=0; n(2)=48; n(t+3) = 575*(n(t+2) - n(t+1)) + n(t) resulting in n(j) terms 0, 0, 48, 27600, 15842400, 9093510048, 5219658925200.
%F A159661 From _Colin Barker_, Sep 25 2015: (Start)
%F A159661 a(n) = 24*a(n-1)-a(n-2) for n>2.
%F A159661 G.f.: x*(1+x) / (1 - 24*x + x^2). (End)
%F A159661 a(n) = (12+sqrt(143))^(-n)*(-11 - sqrt(143) + (-11+sqrt(143))*(12+sqrt(143))^(2*n))/22. - _Colin Barker_, Jul 26 2016
%F A159661 From _G. C. Greubel_, Jun 25 2022: (Start)
%F A159661 a(n) = ChebyshevU(n-1, 12) + Chebyshev(n-2, 12).
%F A159661 E.g.f.: exp(12*x)*(cosh(sqrt(143)*x) + sqrt(13/11)*sinh(sqrt(143)*x)). (End)
%p A159661 for a from 1 by 2 to 100000 do b:=sqrt((13*a*a-2)/11): if (trunc(b)=b) then
%p A159661 n:=(a^2-1)/C: La:=[op(La),a]: Lb:=[op(Lb),b]: Ln:=[op(Ln),n]: endif: enddo:
%t A159661 LinearRecurrence[{24,-1}, {1,25}, 31] (* _G. C. Greubel_, Jun 25 2022 *)
%o A159661 (PARI) Vec(x*(x+1)/(x^2-24*x+1) + O(x^20)) \\ _Colin Barker_, Sep 25 2015
%o A159661 (PARI) a(n) = round((12+sqrt(143))^(-n)*(-11-sqrt(143)+(-11+sqrt(143))*(12+sqrt(143))^(2*n))/22) \\ _Colin Barker_, Jul 26 2016
%o A159661 (Magma) [n le 2 select 24*n-23 else 24*Self(n-1) -Self(n-2): n in [1..31]]; // _G. C. Greubel_, Jun 25 2022
%o A159661 (SageMath) [chebyshev_U(n-1, 12) + chebyshev_U(n-2, 12) for n in (1..30)] # _G. C. Greubel_, Jun 25 2022
%Y A159661 Cf. A077423, A157456.
%K A159661 nonn,easy
%O A159661 1,2
%A A159661 _Paul Weisenhorn_, Apr 19 2009