cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159664 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j), with positive integer numbers.

This page as a plain text file.
%I A159664 #30 Jun 12 2025 11:44:32
%S A159664 1,23,551,13201,316273,7577351,181540151,4349386273,104203730401,
%T A159664 2496540143351,59812759710023,1433009692897201,34332419869822801,
%U A159664 822545067182850023,19706749192518577751,472139435553263016001,11311639704085793806273,271007213462505788334551
%N A159664 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j), with positive integer numbers.
%C A159664 Positive values of x (or y) satisfying x^2 - 24*x*y + y^2 + 22 = 0. - _Colin Barker_, Feb 19 2014
%H A159664 Vincenzo Librandi, <a href="/A159664/b159664.txt">Table of n, a(n) for n = 1..200</a>
%H A159664 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (24,-1).
%F A159664 The a(j) recurrence is a(1)=1, a(2)=23, a(t+2) = 24*a(t+1) - a(t) resulting in terms 1, 23, 551, 13201, ... (this sequence).
%F A159664 The b(j) recurrence is b(1)=1, b(2)=25, b(t+2) = 24*b(t+1) - b(t) resulting in terms 1, 25, 599, 14351, ... (A159661).
%F A159664 The n(j) recurrence is n(0)=n(1)=1, n(2)=48, n(t+3) = 575*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 48, 27600, 15842400, ... (A159665).
%F A159664 G.f.: x*(1-x)/(1 - 24*x + x^2). - _Colin Barker_, Feb 19 2014
%F A159664 a(n) = (12+sqrt(143))^(-n)*(13+sqrt(143)-(-13+sqrt(143))*(12+sqrt(143))^(2*n))/26. - _Colin Barker_, Jul 25 2016
%F A159664 a(n) = A077423(n-1) - A077423(n-2). - _G. C. Greubel_, Sep 27 2022
%p A159664 for a from 1 by 2 to 100000 do b:=sqrt((13*a*a-2)/11): if (trunc(b)=b) then
%p A159664 n:=(a*a-1)/11: La:=[La),a]:Lb:=[op(Lb),b]: Ln:=[op(Ln),n]: end if: end do:
%p A159664 # Second program
%p A159664 seq(simplify(ChebyshevU(n-1,12) - ChebyshevU(n-2,12)), n=1..30); # _G. C. Greubel_, Sep 27 2022
%t A159664 CoefficientList[Series[(1-x)/(1-24x+x^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Feb 21 2014 *)
%t A159664 LinearRecurrence[{24,-1}, {1,23}, 30] (* _G. C. Greubel_, Sep 27 2022 *)
%o A159664 (PARI) Vec(x*(1-x)/(1-24*x+x^2) + O(x^100)) \\ _Colin Barker_, Feb 19 2014
%o A159664 (Magma) [n le 2 select 23^(n-1) else 24*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Feb 21 2014
%o A159664 (PARI) a(n) = round((12+sqrt(143))^(-n)*(13+sqrt(143)-(-13+sqrt(143))*(12+sqrt(143))^(2*n))/26) \\ _Colin Barker_, Jul 25 2016
%o A159664 (SageMath)
%o A159664 def A159664(n): return chebyshev_U(n-1,12) - chebyshev_U(n-2,12)
%o A159664 [A159664(n) for n in range(1,30)] # _G. C. Greubel_, Sep 27 2022
%Y A159664 Cf. A077423, A157456, A159661, A159665.
%Y A159664 Cf. similar sequences listed in A238379.
%K A159664 nonn,easy
%O A159664 1,2
%A A159664 _Paul Weisenhorn_, Apr 19 2009
%E A159664 More terms from _Colin Barker_, Feb 19 2014