cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159665 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j); with positive integer numbers.

This page as a plain text file.
%I A159665 #22 Jul 07 2022 02:20:09
%S A159665 0,48,27600,15842400,9093510048,5219658925200,2996075129554800,
%T A159665 1719741904705530048,987128857225844692800,566610244305730148137200,
%U A159665 325233293102631879186060048,186683343630666392922650330400,107155914010709406905722103589600
%N A159665 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j); with positive integer numbers.
%H A159665 Colin Barker, <a href="/A159665/b159665.txt">Table of n, a(n) for n = 1..363</a>
%H A159665 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (575,-575,1).
%F A159665 The a(j) recurrence is a(1)=1; a(2)=23; a(t+2) = 24*a(t+1) - a(t) resulting in terms 1, 23, 551, 13201, ... (A159664).
%F A159665 The b(j) recurrence is b(1)=1; b(2)=25; b(t+2) = 24*b(t+1) - b(t) resulting in terms 1, 25, 599, 14351, ... (A159661).
%F A159665 The n(j) recurrence is n(0)=n(1)=1; n(2)=48; n(t+3) = 575*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 48, 27600, 15842400 as listed above.
%F A159665 From _Colin Barker_, Sep 25 2015: (Start)
%F A159665 a(n) = 575*a(n-1) - 575*a(n-2) + a(n-3) for n > 3.
%F A159665 G.f.: 48*x^2 / ((1-x)*(1-574*x+x^2)). (End)
%F A159665 a(n) = (-24 + (12 + sqrt(143))*(287 + 24*sqrt(143))^(-n) - (-12 + sqrt(143))*(287 + 24*sqrt(143))^n)/286. - _Colin Barker_, Jul 26 2016
%F A159665 From _G. C. Greubel_, Jun 25 2022: (Start)
%F A159665 a(n) = (12/143)*(ChebyshevU(n, 287) - 573*ChebyshevU(n-1, 287) - 1).
%F A159665 E.g.f.: (12/143)*(exp(287*x)*( (sqrt(143)/12)*sinh(24*sqrt(143)*x) + cosh(24*sqrt(143)*x) ) - exp(x)). (End)
%p A159665 for a from 1 by 2 to 100000 do b:=sqrt((13*a*a-2)/11): if (trunc(b)=b) then
%p A159665 n:=(a*a-1)/11: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: endif: enddo:
%t A159665 LinearRecurrence[{575,-575,1}, {0,48,27600}, 30] (* _G. C. Greubel_, Jun 26 2022 *)
%o A159665 (PARI) concat(0, Vec(-48*x^2/((x-1)*(x^2-574*x+1)) + O(x^30))) \\ _Colin Barker_, Sep 25 2015
%o A159665 (PARI) a(n) = round((-24+(12+sqrt(143))*(287+24*sqrt(143))^(-n)-(-12+sqrt(143))*(287+24*sqrt(143))^n)/286) \\ _Colin Barker_, Jul 26 2016
%o A159665 (Magma) I:=[0,48,27600]; [n le 3 select I[n] else 575*Self(n-1) -575*Self(n-2) +Self(n-3): n in [1..31]]; // _G. C. Greubel_, Jun 26 2022
%o A159665 (SageMath) [(12/143)*(chebyshev_U(n,287) -573*chebyshev_U(n-1,287) -1) for n in (1..30)] # _G. C. Greubel_, Jun 26 2022
%Y A159665 Cf. A157456, A159661, A159664.
%K A159665 nonn,easy
%O A159665 1,2
%A A159665 _Paul Weisenhorn_, Apr 19 2009