cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159678 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2-equation problem 7*n(j) + 1 = a(j)*a(j) and 9*n(j) + 1 = b(j)*b(j) with positive integer numbers.

This page as a plain text file.
%I A159678 #49 Jun 24 2025 06:38:46
%S A159678 1,17,271,4319,68833,1097009,17483311,278635967,4440692161,
%T A159678 70772438609,1127918325583,17975920770719,286486814005921,
%U A159678 4565813103324017,72766522839178351,1159698552323529599,18482410314337295233,294558866477073194129,4694459453318833810831
%N A159678 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2-equation problem 7*n(j) + 1 = a(j)*a(j) and 9*n(j) + 1 = b(j)*b(j) with positive integer numbers.
%C A159678 The sequence a(j) is A157456, the sequence n(j) is A159679, the sequence b(j) the sequence given here.
%C A159678 Numbers k such that 7*k^2 + 2 is a square. - _Colin Barker_, Mar 17 2014
%H A159678 Colin Barker, <a href="/A159678/b159678.txt">Table of n, a(n) for n = 1..800</a>
%H A159678 K. Andersen, L. Carbone, and D. Penta, <a href="https://pdfs.semanticscholar.org/8f0c/c3e68d388185129a56ed73b5d21224659300.pdf">Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields</a>, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
%H A159678 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16,-1).
%F A159678 The b(j) recurrence (this sequence) is b(1)=1, b(2)=17, b(t+2) = 16*b(t+1) - b(t).
%F A159678 From _R. J. Mathar_, Oct 31 2011: (Start)
%F A159678 G.f.: x*(1+x) / ( 1-16*x+x^2 ).
%F A159678 a(n) = A077412(n-1) + A077412(n-2). (End)
%F A159678 a(n) = 16*a(n-1) - a(n-2), with a(1)=1, a(2)=17. - _Harvey P. Dale_, Dec 25 2011
%F A159678 a(n) = ( (3-sqrt(7))*(8+3*sqrt(7))^n - (3+sqrt(7))*(8-3*sqrt(7))^n )/(2*sqrt(7)). - _Colin Barker_, Jul 25 2016
%p A159678 for a from 1 by 2 to 100000 do b:=sqrt((9*a*a-2)/7): if (trunc(b)=b) then
%p A159678 n:=(a*a-1)/7: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: end if: end do:
%p A159678 # Second program
%p A159678 seq(simplify(ChebyshevU(n-1,8) + ChebyshevU(n-2,8)), n=1..30); # _G. C. Greubel_, Sep 27 2022
%t A159678 Rest[CoefficientList[Series[x (1+x)/(1-16x+x^2),{x,0,30}],x]] (* or *) LinearRecurrence[{16,-1},{1,17},30] (* _Harvey P. Dale_, Dec 25 2011 *)
%o A159678 (Sage) [(lucas_number2(n,16,1)-lucas_number2(n-1,16,1))/14 for n in range(1, 20)] # _Zerinvary Lajos_, Nov 10 2009
%o A159678 (PARI) Vec(x*(1+x)/(1-16*x+x^2) + O(x^30)) \\ _Michel Marcus_, Jan 03 2016
%o A159678 (PARI) a(n) = round((-(8-3*sqrt(7))^n*(3+sqrt(7))-(-3+sqrt(7))*(8+3*sqrt(7))^n)/(2*sqrt(7))) \\ _Colin Barker_, Jul 25 2016
%o A159678 (Magma) [n le 2 select 17^(n-1) else 16*Self(n-1) - Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jun 03 2018
%Y A159678 Cf. A077412, A157456, A159679, A266698.
%K A159678 nonn,easy
%O A159678 1,2
%A A159678 _Paul Weisenhorn_, Apr 19 2009
%E A159678 More terms from _Zerinvary Lajos_, Nov 10 2009