cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159680 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 9*n(j) + 1 = a(j)*a(j) and 11*n(j) + 1 = b(j)*b(j) with positive integer numbers.

This page as a plain text file.
%I A159680 #15 Jul 07 2022 02:20:26
%S A159680 0,40,15960,6352080,2528111920,1006182192120,400457984351880,
%T A159680 159381271589856160,63433345634778399840,25246312181370213280200,
%U A159680 10047968814839710107119800,3999066341994023252420400240,1591618356144806414753212175760,633460106679290959048526025552280
%N A159680 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 9*n(j) + 1 = a(j)*a(j) and 11*n(j) + 1 = b(j)*b(j) with positive integer numbers.
%H A159680 Colin Barker, <a href="/A159680/b159680.txt">Table of n, a(n) for n = 1..350</a>
%H A159680 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (399,-399,1).
%F A159680 The a(j) recurrence is a(1)=1; a(2)=19; a(t+2) = 20*a(t+1) - a(t) resulting in terms 1, 19, 379, 7561, ... (A075839).
%F A159680 The b(j) recurrence is b(1)=1; b(2)=21; b(t+2) = 20*b(t+1) - b(t) resulting in terms 1, 21, 419, 8359, ... (A083043).
%F A159680 The n(j) recurrence is n(0)=n(1)=0; n(2)=40; n(t+3) = 399*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 40, 15960, 6352080 as listed above
%F A159680 G.f.: 40*x^2/((1-x)*(1-398*x+x^2)). - _R. J. Mathar_, Apr 20 2009
%F A159680 a(n) = (-20 + (10 + 3*sqrt(11))*(199 + 60*sqrt(11))^(-n) + (10 - 3*sqrt(11))*(199 + 60*sqrt(11))^n)/198. - _Colin Barker_, Jul 26 2016
%F A159680 From _G. C. Greubel_, Jun 26 2022: (Start)
%F A159680 a(n) = (10/99)*( ChebyshevU(n, 199) - 397*ChebyshevU(n-1, 199) - 1 ).
%F A159680 E.g.f.: (10/99)*(exp(199*x)*( (3*sqrt(11)/10)*sinh(60*sqrt(11)*x) + cosh(60*sqrt(11)*x) ) - exp(x)). (End)
%p A159680 for a from 1 by 2 to 100000 do b:=sqrt((9*a*a-2)/7): if (trunc(b)=b) then
%p A159680 n:=(a*a-1)/7: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: end if: end do:
%t A159680 LinearRecurrence[{399,-399,1}, {0,40,15960}, 50] (* _G. C. Greubel_, Jun 03 2018 *)
%o A159680 (PARI) a(n) = round((-20+(10+3*sqrt(11))*(199+60*sqrt(11))^(-n)+(10-3*sqrt(11))*(199+60*sqrt(11))^n)/198) \\ _Colin Barker_, Jul 26 2016
%o A159680 (PARI) concat(0, Vec(-40*x^2/((x-1)*(x^2-398*x+1)) + O(x^20))) \\ _Colin Barker_, Jul 26 2016
%o A159680 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!(40*x^2/((1-x)*(1-398*x+x^2)))); // _G. C. Greubel_, Jun 03 2018
%o A159680 (SageMath) [(10/99)*(chebyshev_U(n, 199) -397*chebyshev_U(n-1, 199) -1) for n in (1..30)] # _G. C. Greubel_, Jun 26 2022
%Y A159680 Cf. A075839, A083043, A157456.
%K A159680 nonn,easy
%O A159680 1,2
%A A159680 _Paul Weisenhorn_, Apr 19 2009
%E A159680 More terms from _R. J. Mathar_, Apr 20 2009