cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159681 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 5*n(j)+1=a(j)*a(j) and 7*n(j)+1=b(j)*b(j) with positive integer numbers.

This page as a plain text file.
%I A159681 #18 Sep 27 2022 07:12:14
%S A159681 0,24,3432,487344,69199440,9825833160,1395199109304,198108447688032,
%T A159681 28130004372591264,3994262512460271480,567157146764985958920,
%U A159681 80532320578115545895184,11435022364945642531157232,1623692643501703123878431784,230552920354876897948206156120
%N A159681 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 5*n(j)+1=a(j)*a(j) and 7*n(j)+1=b(j)*b(j) with positive integer numbers.
%H A159681 Colin Barker, <a href="/A159681/b159681.txt">Table of n, a(n) for n = 1..450</a>
%H A159681 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (143,-143,1).
%F A159681 The a(j) recurrence is a(1)=1, a(2)=11, a(t+2) = 12*a(t+1) - a(t) resulting in terms 1, 11, 131, 1561, ... (A077417).
%F A159681 The b(j) recurrence is b(1)=1, b(2)=13, b(t+2) = 12*b(t+1) - b(t) resulting in terms 1, 13, 155, 1847, ... (A077416).
%F A159681 The n(j) recurrence is n(0)=n(1)=0, n(2)=24, n(t+3) = 143*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 24, 3432, 487344, ... (this sequence).
%F A159681 G.f.: 24*x^2/((1-x)*(1-142*x+x^2)). - _R. J. Mathar_, Apr 20 2009
%F A159681 a(n) = (-12+(6+sqrt(35))*(71+12*sqrt(35))^(-n)-(-6+sqrt(35))*(71+12*sqrt(35))^n)/70. - _Colin Barker_, Jul 26 2016
%F A159681 a(n) = (6/35)*(ChebyshevU(n, 71) - 141*ChebyshevU(n-1, 71) - 1). - _G. C. Greubel_, Sep 27 2022
%p A159681 for a from 1 by 2 to 100000 do b:=sqrt((7*a*a-2)/5): if (trunc(b)=b) then
%p A159681 n:=(a*a-1)/5: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: end if: end do:
%p A159681 # Second program
%p A159681 seq((6/35)*(simplify(ChebyshevU(n,71) -141*ChebyshevU(n-1,71)) -1), n=1..30); # _G. C. Greubel_, Sep 27 2022
%t A159681 LinearRecurrence[{143,-143,1}, {0, 24, 3432}, 30] (* or *) CoefficientList[Series[24*x^2/((1-x)*(1-142*x+x^2)), {x,0,30}], x] (* _G. C. Greubel_, Jun 03 2018 *)
%o A159681 (PARI) concat(0, Vec(-24*x^2/((x-1)*(x^2-142*x+1)) + O(x^20))) \\ _Colin Barker_, Jul 26 2016
%o A159681 (PARI) a(n) = round((-12+(6+sqrt(35))*(71+12*sqrt(35))^(-n)-(-6+sqrt(35))*(71+12*sqrt(35))^n)/70) \\ _Colin Barker_, Jul 26 2016
%o A159681 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients( R!(24*x^2/((1-x)*(1-142*x+x^2)))); // _G. C. Greubel_, Jun 03 2018
%o A159681 (SageMath) [(6/35)*(-1 + chebyshev_U(n, 71) - 141*chebyshev_U(n-1, 71)) for n in range(1,30)] # _G. C. Greubel_, Sep 27 2022
%Y A159681 Cf. A077417, A077416, A157456.
%K A159681 nonn,easy
%O A159681 1,2
%A A159681 _Paul Weisenhorn_, Apr 19 2009
%E A159681 More terms from _R. J. Mathar_, Apr 20 2009