cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159683 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 3*n(j) + 1 = a(j)*a(j) and 5*n(j) + 1 = b(j)*b(j) with positive integer numbers.

This page as a plain text file.
%I A159683 #26 Sep 28 2022 18:53:23
%S A159683 0,16,1008,62496,3873760,240110640,14882985936,922505017408,
%T A159683 57180428093376,3544264036771920,219687189851765680,
%U A159683 13617061506772700256,844038126230055650208,52316746764756677612656,3242794261288683956334480,201000927453133648615125120
%N A159683 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 3*n(j) + 1 = a(j)*a(j) and 5*n(j) + 1 = b(j)*b(j) with positive integer numbers.
%H A159683 Colin Barker, <a href="/A159683/b159683.txt">Table of n, a(n) for n = 1..559</a>
%H A159683 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (63,-63,1).
%F A159683 The a(j) recurrence is a(1)=1, a(2)=7, a(t+2) = 8*a(t+1) - a(t) resulting in terms 1, 7, 55. 433, 3409, ... (A070997).
%F A159683 The b(j) recurrence is b(1)=1, b(2)=9, b(t+2) = 8*b(t+1) - b(t) resulting in terms 1, 9, 71, 559, 4401, ... (A057080).
%F A159683 The n(j) recurrence is n(0) = n(1) = 0, n(2)=16, n(t+3) = 63*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 16, 1008, 62496, ... (this sequence).
%F A159683 From _Colin Barker_, Sep 25 2015: (Start)
%F A159683 a(n) = 63*a(n-1) - 63*a(n-2) + a(n-3) for n>3.
%F A159683 G.f.: 16*x^2 / ((1-x)*(1-62*x+x^2)). (End)
%F A159683 a(n) = (-8+(4+sqrt(15))*(31+8*sqrt(15))^(-n) -(-4+sqrt(15))*(31+8*sqrt(15))^n)/30. - _Colin Barker_, Mar 03 2016
%F A159683 a(n) = (4/15)*(-1 + ChebyshevU(n, 31) - 61*ChebyshevU(n-1, 31)). - _G. C. Greubel_, Sep 27 2022
%p A159683 for a from 1 by 2 to 100000 do b:=sqrt((5*a*a-2)/3): if (trunc(b)=b) then
%p A159683 n:=(a*a-1)/3: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: end if: end do:
%p A159683 # Second program
%p A159683 seq((4/15)*(simplify(ChebyshevU(n, 31) - 61*ChebyshevU(n-1, 31)) -1), n=1..30); # _G. C. Greubel_, Sep 27 2022
%t A159683 CoefficientList[Series[16*x/((1-x)*(1-62*x+x^2)), {x, 0, 30}], x] (* _G. C. Greubel_, Jun 02 2018 *)
%t A159683 LinearRecurrence[{63,-63,1},{0,16,1008},30] (* _Harvey P. Dale_, May 07 2022 *)
%o A159683 (PARI) concat(0, Vec(16*x^2/((1-x)*(1-62*x+x^2)) + O(x^30))) \\ _Colin Barker_, Sep 25 2015
%o A159683 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!(16*x^2/((1-x)*(1-62*x+x^2)))); // _G. C. Greubel_, Jun 02 2018
%o A159683 (SageMath) [(4/15)*(-1 + chebyshev_U(n, 31) - 61*chebyshev_U(n-1, 31)) for n in range(1,30)] # _G. C. Greubel_, Sep 27 2022
%Y A159683 Cf. A057080, A070997, A157456, A245031.
%K A159683 nonn,easy
%O A159683 1,2
%A A159683 _Paul Weisenhorn_, Apr 19 2009