This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159688 #22 Feb 04 2023 14:15:23 %S A159688 1,2,2,3,2,6,4,2,4,5,2,3,-30,6,2,12,-12,7,2,2,-6,42,8,2,12,-24,12,9,2, %T A159688 3,-15,9,-30,10,2,4,-10,2,-20,11,2,6,-1,1,-2,66,12,2,12,-8,6,-8,12,13, %U A159688 2,1,-6,7,-10,3,-2730,14,2,12,-60,28,-20,12,-420,15,2,6,-30,18,-10,6,-90,6,16,2,4,-24,12,-16,12,-24,4 %N A159688 Triangle read by rows, denominators of Jakob Bernoulli's "Sums of Powers" triangle. %C A159688 Let the triangle = T. Row sums = 1. Row sums of n-th binomial transform of T = powers of (n-1). Then multiply the results by the partial sum operator, (1; 1,1; 1,1,1; ...) to obtain Bernoulli's "Sums of Powers". %C A159688 Inserting zeros to account for (n+1) terms per row, right border = Bernoulli numbers: (A106458): (1, 1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...). %D A159688 Jakob Bernoulli, "Ars conjectandi", posthumously published in 1713, in which Bernoulli gives the table "Summae Potestatum (Sums of Powers) [cf. Young, p. 86]. %D A159688 Robert M. Young, "Excursions in Calculus", MAA, 1992. %H A159688 Seiichi Manyama, <a href="/A159688/b159688.txt">Rows n = 0..200, flattened</a> %H A159688 Wikipedia, <a href="https://en.wikipedia.org/wiki/Faulhaber%27s_formula">Faulhaber's formula</a>. %e A159688 Let row 0 = 1; followed by the corrected table, giving denominators: %e A159688 1; %e A159688 2, 2; %e A159688 3, 2, 6; %e A159688 4, 2, 4; %e A159688 5, 2, 3, -30; %e A159688 6, 2, 12, -12; %e A159688 7, 2, 2, -6, 42; %e A159688 8, 2, 12, -24, 12; %e A159688 9, 2, 3, -15, 9, -30; %e A159688 10, 2, 4, -10, 2, -20; %e A159688 11, 2, 6, -1, 1, -2, 66; %e A159688 ... %e A159688 The complete triangle with row 0 = 1, along with numerators: %e A159688 1; %e A159688 1/2, 1/2; %e A159688 1/3, 1/2, 1/6; %e A159688 1/4, 1/2, 1/4; %e A159688 1/5, 1/2, 1/3, -1/30; %e A159688 1/6, 1/2, 5/12, -1/12; %e A159688 1/7, 1/2, 1/2, -1/6, 1/42; %e A159688 1/8, 1/2, 7/12, -7/14, 1/12; %e A159688 1/9, 1/2, 2/3, -7/15, 1/2, -3/20; %e A159688 1/10, 1/2, 3/4, -7/10, 1/2, -3/20; %e A159688 1/11, 1/2, 5/6, -1/1, 1/1, -1/2, 5/66; %e A159688 ... %t A159688 f[n_, x_] := f[n, x] = ((x+1)^(n+1) - 1)/(n+1) - Sum[Binomial[n+1, k]*f[k, x], {k, 0, n-1}]/(n+1); f[0, x_] := x; row[n_] := CoefficientList[f[n, x], x] // Reverse // (Sign[#]*Denominator[#])& // DeleteCases[#,0]&; Table[row[n], {n, 0, 15}] // Flatten (* _Jean-François Alcover_, Dec 29 2012 *) %Y A159688 Cf. A106458. %K A159688 tabf,sign %O A159688 0,2 %A A159688 _Gary W. Adamson_, Apr 19 2009 %E A159688 Extended to 15 rows by _Jean-François Alcover_, Dec 29 2012