This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159696 #12 Sep 08 2022 08:45:44 %S A159696 8,17,36,76,160,336,704,1472,3072,6400,13312,27648,57344,118784, %T A159696 245760,507904,1048576,2162688,4456448,9175040,18874368,38797312, %U A159696 79691776,163577856,335544320,687865856,1409286144,2885681152,5905580032 %N A159696 a(0)=8, a(n) = 2*a(n-1) + 2^(n-1) for n > 0. %C A159696 Diagonal of triangles A062111, A152920. %H A159696 G. C. Greubel, <a href="/A159696/b159696.txt">Table of n, a(n) for n = 0..3300</a> %H A159696 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4). %F A159696 a(n) = Sum_{k=0..n} (k+8)*binomial(n,k). %F A159696 From _R. J. Mathar_, Apr 20 2009: (Start) %F A159696 a(n) = (16+n)*2^(n-1). %F A159696 a(n) = 4*a(n-1) - 4*a(n-2). %F A159696 G.f.: (8-15*x)/(1-2*x)^2. (End) %F A159696 E.g.f.: (x+8)*exp(2*x). - _G. C. Greubel_, Jun 02 2018 %e A159696 a(0)=8, a(1) = 2*8 + 1 = 17, a(2) = 2*17 + 2 = 36, a(3) = 2*36 + 4 = 76, a(4) = 2*76 + 8 = 160, ... %t A159696 LinearRecurrence[{4,-4}, {8,17}, 30] (* or *) Table[(16+n)*2^(n-1), {n,0,30}] (* _G. C. Greubel_, Jun 02 2018 *) %o A159696 (PARI) for(n=0, 30, print1((16+n)*2^(n-1), ", ")) \\ _G. C. Greubel_, Jun 02 2018 %o A159696 (Magma) [(16+n)*2^(n-1): n in [0..30]]; // _G. C. Greubel_, Jun 02 2018 %Y A159696 Cf. A000079, A001787, A001792, A045623, A045891, A034007, A111297, A159694, A159695. %K A159696 easy,nonn %O A159696 0,1 %A A159696 _Philippe Deléham_, Apr 20 2009 %E A159696 More terms from _R. J. Mathar_, Apr 20 2009