This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159753 #14 Sep 08 2022 08:45:44 %S A159753 1,20,-482,-44920,376972,166017200,1657897480,-845405072800, %T A159753 -27143960497520,5422298983726400,323914738103841760, %U A159753 -41346382274390012800,-3969548434571273011520,358219141300718435244800,52679225176808585054984320,-3369705453245099537303104000 %N A159753 Numerator of Hermite(n, 10/21). %H A159753 G. C. Greubel, <a href="/A159753/b159753.txt">Table of n, a(n) for n = 0..390</a> %F A159753 From _G. C. Greubel_, Jul 14 2018: (Start) %F A159753 a(n) = 21^n * Hermite(n, 10/21). %F A159753 E.g.f.: exp(20*x - 441*x^2). %F A159753 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(20/21)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159753 Numerator[Table[HermiteH[n, 10/21], {n, 0, 30}]] (* _Vladimir Joseph Stephan Orlovsky_, Jun 17 2011 *) %t A159753 Table[21^n*HermiteH[n, 10/21], {n,0,30}] (* _G. C. Greubel_, Jul 14 2018 *) %o A159753 (PARI) a(n)=numerator(polhermite(n, 10/21)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159753 (PARI) x='x+O('x^30); Vec(serlaplace(exp(20*x - 441*x^2))) \\ _G. C. Greubel_, Jul 14 2018 %o A159753 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(20/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 14 2018 %Y A159753 Cf. A009965 (denominators) %K A159753 sign,frac %O A159753 0,2 %A A159753 _N. J. A. Sloane_, Nov 12 2009