cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159764 Riordan array (1/(1+4x+x^2), x/(1+4x+x^2)).

This page as a plain text file.
%I A159764 #15 May 22 2018 05:43:14
%S A159764 1,-4,1,15,-8,1,-56,46,-12,1,209,-232,93,-16,1,-780,1091,-592,156,-20,
%T A159764 1,2911,-4912,3366,-1200,235,-24,1,-10864,21468,-17784,8010,-2120,330,
%U A159764 -28,1,40545,-91824,89238,-48624,16255,-3416,441,-32,1,-151316,386373
%N A159764 Riordan array (1/(1+4x+x^2), x/(1+4x+x^2)).
%C A159764 Row sums are (-1)^n*F(2n+2). Diagonal sums are (-1)^n*4^n. Inverse is A052179.
%C A159764 The positive matrix is (1/(1-4x+x^2), x/(1-4x+x^2)) with general term T(n,k) = if(k<=n, Gegenbauer_C(n-k,k+1,2),0).
%C A159764 For another version, see A124029.
%C A159764 Triangle of coefficients of Chebyshev's S(n,x-4) polynomials (exponents of x in increasing order). - _Philippe Deléham_, Feb 22 2012
%C A159764 Subtriangle of triangle given by (0, -4, 1/4, -1/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Feb 22 2012
%H A159764 G. C. Greubel, <a href="/A159764/b159764.txt">Rows n=0..100 of triangle, flattened</a>
%F A159764 Number triangle T(n,k) = if(k<=n, Gegenbauer_C(n-k,k+1,-2),0).
%F A159764 G.f.: 1/(1+4*x+x^2-y*x). - _Philippe Deléham_, Feb 22 2012
%F A159764 T(n,k) = (-4)*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - _Philippe Deléham_, Feb 22 2012
%e A159764 Triangle begins
%e A159764      1;
%e A159764     -4,     1;
%e A159764     15,    -8,     1;
%e A159764    -56,    46,   -12,     1;
%e A159764    209,  -232,    93,   -16,     1;
%e A159764   -780,  1091,  -592,   156,   -20,     1;
%e A159764   2911, -4912,  3366, -1200,   235,   -24,     1;
%e A159764 Triangle (0, -4, 1/4, -1/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
%e A159764   1;
%e A159764   0,    1;
%e A159764   0,   -4,    1;
%e A159764   0,   15,   -8,    1;
%e A159764   0,  -56,   46,  -12,    1;
%e A159764   0,  209, -232,   93,  -16,    1;
%t A159764 CoefficientList[CoefficientList[Series[1/(1 + 4*x + x^2 - y*x), {x, 0, 10}, {y, 0, 10}], x], y]//Flatten (* _G. C. Greubel_, May 21 2018 *)
%o A159764 (Sage)
%o A159764 @CachedFunction
%o A159764 def A159764(n,k):
%o A159764     if n< 0: return 0
%o A159764     if n==0: return 1 if k == 0 else 0
%o A159764     return A159764(n-1,k-1)-A159764(n-2,k)-4*A159764(n-1,k)
%o A159764 for n in (0..9): [A159764(n,k) for k in (0..n)] # _Peter Luschny_, Nov 20 2012
%Y A159764 Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials : A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967 for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5 respectively.
%K A159764 easy,sign,tabl
%O A159764 0,2
%A A159764 _Paul Barry_, Apr 21 2009