This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159776 #21 Mar 18 2024 12:00:20 %S A159776 1,34,274,-50660,-2447444,95515384,14040751096,-28081874864, %T A159776 -87642381012080,-2781695245370336,601127582131299616, %U A159776 44972889856630550464,-4303061546712430158656,-622297158830800371505280,28180800294357511567970176,8642272527250878380658183424 %N A159776 Numerator of Hermite(n, 17/21). %H A159776 G. C. Greubel, <a href="/A159776/b159776.txt">Table of n, a(n) for n = 0..390</a> %F A159776 From _G. C. Greubel_, Jul 11 2018: (Start) %F A159776 a(n) = 21^n * Hermite(n, 17/21). %F A159776 E.g.f.: exp(34*x - 441*x^2). %F A159776 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(37/21)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159776 Numerator[Table[HermiteH[n, 17/21], {n, 0, 30}]] (* _Vladimir Joseph Stephan Orlovsky_, Jun 17 2011 *) %t A159776 Table[21^n*HermiteH[n, 17/21], {n,0,50}] (* _G. C. Greubel_, Jul 11 2018 *) %o A159776 (PARI) a(n)=numerator(polhermite(n, 17/21)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159776 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(34/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, May 21 2018 %Y A159776 Cf. A009965 (denominators) %K A159776 sign,frac %O A159776 0,2 %A A159776 _N. J. A. Sloane_, Nov 12 2009