cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159781 Values of hypotenuse of primitive Pythagorean triples which can have four different shapes (that is, four different sets of "legs").

This page as a plain text file.
%I A159781 #28 Dec 09 2019 13:21:06
%S A159781 1105,1885,2405,2465,2665,3145,3445,3485,3965,4505,4745,5185,5365,
%T A159781 5525,5785,5945,6205,6305,6409,6565,7085,7345,7565,7585,7685,8177,
%U A159781 8245,8585,8845,8905,9061,9265,9425,9605,9685,9805,10205,10585,10865
%N A159781 Values of hypotenuse of primitive Pythagorean triples which can have four different shapes (that is, four different sets of "legs").
%C A159781 This is a subsequence of A024409, which lists hypotenuse values common to more than one primitive Pythagorean triple. A024409(1) = A006278(2) = 65 is the smallest hypotenuse common to exactly two primitive Pythagorean triples; a(1) = A006278(3) = 1105 is the smallest that is common to four. [edited by _Jon E. Schoenfield_, Aug 19 2018]
%C A159781 A024362(a(n)) = 4. - _Reinhard Zumkeller_, Dec 02 2012
%H A159781 Ray Chandler, <a href="/A159781/b159781.txt">Table of n, a(n) for n = 1..10000</a> (first 100 terms from Reinhard Zumkeller)
%t A159781 f[c_] := f[c] = Block[{a = 1, b, cnt = 0, lmt = Floor[Sqrt[c^2/2]]}, While[b = Sqrt[c^2 - a^2]; a < lmt, If[IntegerQ@ b && GCD[a, b, c] == 1, cnt++]; a++]; cnt]Select[1 + 4 Range[2800], f@# > 2 &] (* _Robert G. Wilson v_, Mar 16 2014 *)
%o A159781 (Haskell)
%o A159781 import Data.List (elemIndices)
%o A159781 a159781 n = a159781_list !! (n-1)
%o A159781 a159781_list = map (+ 1) $ elemIndices 4 a024362_list
%o A159781 -- _Reinhard Zumkeller_, Dec 02 2012
%Y A159781 Cf. A024409 and A146945.
%Y A159781 Cf. A006278 (8, 16, etc. shapes). - _R. J. Mathar_, Apr 12 2010
%K A159781 nonn
%O A159781 1,1
%A A159781 John T. Harrison (harrison_uk_2000(AT)yahoo.co.uk), Apr 22 2009
%E A159781 6429 replaced by 6409 and 3 terms added by _R. J. Mathar_, Apr 12 2010
%E A159781 Missing 8585 and 8845 inserted by _Reinhard Zumkeller_, Dec 02 2012