This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159850 #28 Sep 08 2022 08:45:44 %S A159850 1,17,47,-7429,-160415,4464217,269993839,-1892147821,-489536076223, %T A159850 -4658915114335,987008017069999,28053710866880683, %U A159850 -2150502256703365727,-118026514721378720791,4759029349325350323695,480777330814562061542723,-9102061914203466628786559 %N A159850 Numerator of Hermite(n, 17/22). %H A159850 Robert Israel, <a href="/A159850/b159850.txt">Table of n, a(n) for n = 0..435</a> %H A159850 Simon Plouffe, <a href="http://vixra.org/abs/1409.0048">Conjectures of the OEIS, as of June 20, 2018.</a> %F A159850 D-finite with recurrence a(n) = 17*a(n-1) + 242*(1-n)*a(n-2). - _Robert Israel_, Dec 07 2017 %F A159850 E.g.f.: exp(17*x - 121*x^2). - _Simon Plouffe_, Jun 23 2018 %F A159850 From _G. C. Greubel_, Jun 02 2018: (Start) %F A159850 a(n) = 11^n * Hermite(n, 17/22). %F A159850 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(17/11)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A159850 Numerators of 1, 17/11, 47/121, -7429/1331, -160415/14641, ... %p A159850 f:= gfun:-rectoproc({a(n) = 17*a(n-1)+242*(1-n)*a(n-2), a(0)=1,a(1)=17},a(n),remember): %p A159850 map(f, [$0..40]); # _Robert Israel_, Dec 07 2017 %t A159850 Numerator[Table[HermiteH[n,17/22],{n,0,30}]] (* _Vladimir Joseph Stephan Orlovsky_, Jun 22 2011 *) %t A159850 Table[11^n*HermiteH[n, 17/22], {n,0,30}] (* _G. C. Greubel_, Jul 09 2018 *) %o A159850 (PARI) a(n)=numerator(polhermite(n, 17/22)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159850 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(17/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 09 2018 %Y A159850 Cf. A001020 (denominators). %K A159850 sign,frac %O A159850 0,2 %A A159850 _N. J. A. Sloane_, Nov 12 2009