This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159853 #28 Sep 08 2022 08:45:44 %S A159853 1,-1,1,1,0,1,1,1,1,1,1,2,2,2,1,1,3,4,4,3,1,1,4,7,8,7,4,1,1,5,11,15, %T A159853 15,11,5,1,1,6,16,26,30,26,16,6,1,1,7,22,42,56,56,42,22,7,1,1,8,29,64, %U A159853 98,112,98,64,29,8,1,1,9,37,93,162,210,210,162,93,37,9,1,1,10,46,130,255 %N A159853 Riordan array ((1-2*x+2*x^2)/(1-x), x/(1-x)). %C A159853 Essentially the same as A087698. %H A159853 Muniru A Asiru, <a href="/A159853/b159853.txt">Table of n, a(n) for n = 0..5151</a> %H A159853 Peter Bala, <a href="/A081577/a081577.pdf">A note on the diagonals of a proper Riordan Array</a> %F A159853 From _Peter Bala_, Mar 20 2018: (Start) %F A159853 T(n,k) = C(n,k) - 2*C(n-1,n-k-1) + 2*C(n-2,n-k-2), where C(n,k) = n!/(k!*(n-k)!) for 0 <= k <= n, otherwise 0. %F A159853 Exp(x) * the e.g.f. for row n = the e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(1 + x + x^2/2! + x^3/3!) = 1 + 2*x + 2*x^2/2! + 4*x^3/3! + 8*x^4/4! + 15*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1-x) ). (End) %e A159853 Triangle begins: %e A159853 1; %e A159853 -1, 1; %e A159853 1, 0, 1; %e A159853 1, 1, 1, 1; %e A159853 1, 2, 2, 2, 1; %e A159853 1, 3, 4, 4, 3, 1; %e A159853 ... %p A159853 C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if; %p A159853 end proc: %p A159853 for n from 0 to 10 do %p A159853 seq(C(n, n-k) - 2*C(n-1, n-k-1) + 2*C(n-2, n-k-2), k = 0..n); %p A159853 end do; # _Peter Bala_, Mar 20 2018 %t A159853 Join[{1, -1}, Rest[T[0, 0]=1; T[n_, k_]:=Binomial[n, n - k] - 2 Binomial[n - 1, n - k - 1] + 2 Binomial[n - 2, n - k - 2]; Table[T[n, k], {n, 1, 15}, {k, 0, n}]//Flatten]] (* _Vincenzo Librandi_, Mar 22 2018 *) %o A159853 (Sage) # uses[riordan_array from A256893] %o A159853 riordan_array((1-2*x+2*x^2)/(1-x), x/(1-x), 8) # _Peter Luschny_, Mar 21 2018 %o A159853 (GAP) Flat(List([0..12],n->List([0..n],k->Binomial(n,k)-2*Binomial(n-1,n-k-1)+2*Binomial(n-2,n-k-2)))); # _Muniru A Asiru_, Mar 22 2018 %o A159853 (Magma) /* As triangle */ [[Binomial(n, n-k)-2*Binomial(n-1, n-k-1)+2*Binomial(n-2, n-k-2): k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Mar 22 2018 %Y A159853 Cf. A087698. %K A159853 easy,sign,tabl %O A159853 0,12 %A A159853 _Philippe Deléham_, Apr 24 2009