This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159856 #37 May 09 2024 15:55:11 %S A159856 1,2,-1,3,-4,1,4,-11,6,-1,5,-26,23,-8,1,6,-57,72,-39,10,-1,7,-120,201, %T A159856 -150,59,-12,1,8,-247,522,-501,268,-83,14,-1,9,-502,1291,-1524,1037, %U A159856 -434,111,-16,1,10,-1013,3084,-4339,3598,-1905,656,-143,18,-1 %N A159856 Triangle read by rows: T(n,0) = n+1, T(n,k) = 2*T(n-1,k) - T(n-1,k-1), T(n,k) = 0 if k > n and if k < 0. %C A159856 A Riordan array - see the Luzon references. %C A159856 The second column is A000295 signed. - _Michel Marcus_, Feb 14 2014 %H A159856 Ana Luzón, <a href="http://arxiv.org/abs/0907.2328">Iterative Processes Related to Riordan Arrays: The Reciprocation and the Inversion of Power Series</a>, arXiv:0907.2328 [math.CO]; Discrete Math., 310 (2010), 3607-3618. %H A159856 Ana Luzón and Manuel A. Morón, <a href="http://dx.doi.org/10.1016/j.laa.2008.12.001">Riordan matrices in the reciprocation of quadratic polynomials</a>, Linear Algebra Appl. 430 (2009), no. 8-9, 22542270. %F A159856 From _R. J. Mathar_, May 31 2009: (Start) %F A159856 Sum_{k=0..n} T(n,k) = A080956(n). %F A159856 Conjecture: Sum_{i=0..n} |T(n,k)| = A047926(n). (End) %F A159856 T(n,k) = (-1)^k*Sum_{i=0..n-k} binomial(n+1,i+k+1)*binomial(i+k-1,k-1) for k > 0. - _Vladimir Kruchinin_, Nov 22 2016 [corrected by _Werner Schulte_, May 09 2024] %F A159856 G.f.: (1-2*x)/(1-x)^2/(1-2*x+y*x). - _Vladimir Kruchinin_, Nov 22 2016 %e A159856 Triangle begins %e A159856 1; %e A159856 2, -1; %e A159856 3, -4, 1; %e A159856 4, -11, 6, -1; %e A159856 5, -26, 23, -8, 1; %e A159856 6, -57, 72, -39, 10, -1; %e A159856 7, -120, 201, -150, 59, -12, 1; %e A159856 ... %t A159856 With[{m = 9}, CoefficientList[CoefficientList[Series[(1-2*x)/(1-x)^2/(1-2*x %t A159856 +y*x), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* _Georg Fischer_, Feb 18 2020 *) %o A159856 (Maxima) %o A159856 T(n,k):=coeff(taylor(1/(1-x)^2*(-x/(1-x))^k,x,0,15),x,n); /* _Vladimir Kruchinin_, Nov 22 2016 */ %Y A159856 Cf. A000295, A047926, A080956, A181690. %K A159856 easy,sign,tabl %O A159856 0,2 %A A159856 _Philippe Deléham_, Apr 24 2009 %E A159856 a(41) corrected by _Georg Fischer_, Feb 18 2020