This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159859 #12 Sep 08 2022 08:45:44 %S A159859 1,4,-1042,-12632,3256780,66485744,-16962423224,-489901195808, %T A159859 123664101613712,4641180127773760,-1158964855054670624, %U A159859 -53739545172065063296,13273074802437996468928,735369564714290029481728,-179616392573875043315708800,-11610759562843564089946190336 %N A159859 Numerator of Hermite(n, 2/23). %H A159859 G. C. Greubel, <a href="/A159859/b159859.txt">Table of n, a(n) for n = 0..385</a> %F A159859 From _G. C. Greubel_, Jul 09 2018: (Start) %F A159859 a(n) = 23^n * Hermite(n, 2/23). %F A159859 E.g.f.: exp(4*x-529*x^2). %F A159859 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/23)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159859 Numerator[Table[HermiteH[n, 2/23], {n, 0, 30}]] (* _Vladimir Joseph Stephan Orlovsky_, Jun 22 2011 *) %t A159859 Table[23^n*HermiteH[n, 2/23], {n,0,30}] (* _G. C. Greubel_, Jul 09 2018 *) %o A159859 (PARI) a(n)=numerator(polhermite(n,2/23)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159859 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(4/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 09 2018 %Y A159859 Cf. A159858. %K A159859 sign,frac %O A159859 0,2 %A A159859 _N. J. A. Sloane_, Nov 12 2009