This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159861 #20 Feb 16 2023 16:07:34 %S A159861 1,1,1,11,1,1,1111,6,1,1,11111111,58,4,1,1,1111111111111111,5829,38,3, %T A159861 1,1,11111111111111111111111111111111,58292915,3813,29,3,1,1, %U A159861 1111111111111111111111111111111111111111111111111111111111111111,5829291479146458,38127938,2833,23,2,1,1 %N A159861 Square array A(m,n), m>=1, n>=1, read by antidiagonals: A(m,1)=1, A(m,n) is the rank with respect to m of the concatenation of all preceding terms in row m, and the rank of S with respect to m is floor ((S+m-1)/m). %H A159861 Alois P. Heinz, <a href="/A159861/b159861.txt">Antidiagonals n = 1..12, flattened</a> %e A159861 A(3,4) = 38, because A(3,1).A(3,2).A(3,3) = 114, and the rank of 114 with respect to 3 is floor(116/3) = 38. %e A159861 Square array A(m,n) begins: %e A159861 1, 1, 11, 1111, 11111111, 1111111111111111, ... %e A159861 1, 1, 6, 58, 5829, 58292915, ... %e A159861 1, 1, 4, 38, 3813, 38127938, ... %e A159861 1, 1, 3, 29, 2833, 28323209, ... %e A159861 1, 1, 3, 23, 2265, 22646453, ... %e A159861 1, 1, 2, 19, 1870, 18698645, ... %p A159861 R:= (S,m)-> iquo(S+m-1, m): %p A159861 A:= proc(m, n) option remember; `if`(n=1, 1, %p A159861 R(parse(cat(seq(A(m, j), j=1..n-1))), m)) %p A159861 end: %p A159861 seq(seq(A(m, d-m), m=1..d-1), d=1..10); %t A159861 R[S_, m_] := Quotient[S + m - 1, m]; %t A159861 A[m_, n_] := If[n == 1, 1, R[ToExpression@StringJoin[ToString /@ Table[A[m, j], {j, 1, n - 1}]], m]]; %t A159861 Table[Table[A[m, d - m], {m, 1, d - 1}], {d, 1, 10}] // Flatten (* _Jean-François Alcover_, Feb 13 2023, after Maple code *) %Y A159861 Row m=2 gives: A156147. %Y A159861 Main diagonal gives: A159862. %Y A159861 Cf. A156146, A010783. %K A159861 easy,nonn,tabl,base %O A159861 1,4 %A A159861 _Eric Angelini_ and _Alois P. Heinz_, Apr 24 2009