This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159864 #23 Oct 27 2022 19:43:07 %S A159864 0,1,1,1,0,-1,2,1,1,2,3,1,0,-1,-3,5,2,1,1,2,5,8,3,1,0,-1,-3,-8,13,5,2, %T A159864 1,1,2,5,13,21,8,3,1,0,-1,-3,-8,-21,34,13,5,2,1,1,2,5,13,34,55,21,8,3, %U A159864 1,0,-1,-3,-8,-21,-55,89,34,13,5,2,1,1,2,5,13,34,89 %N A159864 Difference array of Fibonacci numbers A000045 read by antidiagonals. %H A159864 Alois P. Heinz, <a href="/A159864/b159864.txt">Rows n = 0..200, flattened</a> %F A159864 Conjecture: row sums are Sum_{k=0..n} T(2n,k)=0. Sum_{k=0..n} T(2n+1,k) = A025169(n). - _R. J. Mathar_, May 29 2009 %F A159864 (1/2) * Sum_{k=0..n} |T(n,k)| = A074331(n). - _Alois P. Heinz_, Oct 27 2022 %e A159864 Triangle begins: %e A159864 0; %e A159864 1, 1; %e A159864 1, 0, -1; %e A159864 2, 1, 1, 2; %e A159864 3, 1, 0, -1, -3; %e A159864 ... %p A159864 A159864Q := proc(n,k) option remember; if n = 0 then combinat[fibonacci](k) ; else procname(n-1,k+1) -procname(n-1,k) ; fi; end: A159864 := proc(n,k) A159864Q(k,n-k) ; end: for n from 0 to 5 do for k from 0 to n do printf("%d,",A159864(n,k)) ; od: od: # _R. J. Mathar_, May 29 2009 %p A159864 # second Maple program: %p A159864 T:= (n, k)-> (<<0|1>, <1|1>>^(n-2*k))[1, 2]: %p A159864 seq(seq(T(n, k), k=0..n), n=0..12); # _Alois P. Heinz_, Oct 27 2022 %t A159864 nmax = 10; f = Table[Fibonacci[n], {n, 0, nmax}]; t = Table[Differences[f, n], {n, 0, nmax}]; Table[t[[n-k+1, k+1]], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Apr 14 2015 *) %t A159864 T[ n_, k_] := If[ k<0 || k>n, 0, Fibonacci[n - 2*k]]; Join@@Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* _Michael Somos_, Oct 27 2022 *) %o A159864 (PARI) {T(n, k) = If(k<0 || k>n, 0, fibonacci(n - 2*k))}; /* _Michael Somos_, Oct 27 2022 */ %Y A159864 Cf. A000045, A074331. %Y A159864 Main diagonal gives A039834. %K A159864 easy,sign,tabl %O A159864 0,7 %A A159864 _Philippe Deléham_, Apr 24 2009 %E A159864 Sign of a(65) = -55 corrected by _Jean-François Alcover_, Apr 14 2015