This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159871 #12 Sep 08 2022 08:45:44 %S A159871 1,14,-862,-41692,2152300,206572744,-8493648584,-1430234859088, %T A159871 42880673385872,12705837274723040,-230428050134150624, %U A159871 -137653751068447871936,754569132502974755008,1758215991420055828669568,14236680031434866820993920,-25843381744473778798759726336 %N A159871 Numerator of Hermite(n, 7/23). %H A159871 G. C. Greubel, <a href="/A159871/b159871.txt">Table of n, a(n) for n = 0..385</a> %F A159871 From _G. C. Greubel_, Jul 14 2018: (Start) %F A159871 a(n) = 23^n * Hermite(n, 7/23). %F A159871 E.g.f.: exp(14*x - 529*x^2). %F A159871 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(14/23)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159871 Numerator[Table[HermiteH[n, 7/23], {n, 0, 30}]] (* _Vladimir Joseph Stephan Orlovsky_, Jun 22 2011 *) %t A159871 Table[23^n*HermiteH[n, 7/23], {n,0,30}] (* _G. C. Greubel_, Jul 14 2018 *) %o A159871 (PARI) a(n)=numerator(polhermite(n, 7/23)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159871 (PARI) x='x+O('x^30); Vec(serlaplace(exp(14*x - 529*x^2))) \\ _G. C. Greubel_, Jul 14 2018 %o A159871 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(14/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 14 2018 %Y A159871 Cf. A159858, A159859. %K A159871 sign,frac %O A159871 0,2 %A A159871 _N. J. A. Sloane_, Nov 12 2009