This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159872 #10 Sep 08 2022 08:45:44 %S A159872 1,16,-802,-46688,1798540,226360256,-5892512504,-1531215105152, %T A159872 19140505922192,13266452744761600,30007346525073376, %U A159872 -139878952495176553984,-2587288738781628813632,1734506561058255468362752,63337674290134610196498560,-24678108393752726234245105664 %N A159872 Numerator of Hermite(n, 8/23). %H A159872 G. C. Greubel, <a href="/A159872/b159872.txt">Table of n, a(n) for n = 0..385</a> %F A159872 From _G. C. Greubel_, Jul 15 2018: (Start) %F A159872 a(n) = 23^n * Hermite(n, 8/23). %F A159872 E.g.f.: exp(16*x - 529*x^2). %F A159872 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(16/23)^(n-2*k)/(k!*(n-2*k)!)). (End) %e A159872 Numerators of 1, 16/23, -802/529, -46688/12167, 1798540/279841 %t A159872 Numerator[Table[HermiteH[n, 8/23], {n, 0, 30}]] (* or *) Table[23^n* HermiteH[n, 8/23], {n,0,30}] (* _G. C. Greubel_, Jul 15 2018 *) %o A159872 (PARI) a(n)=numerator(polhermite(n, 8/23)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159872 (PARI) x='x+O('x^30); Vec(serlaplace(exp(16*x - 529*x^2))) \\ _G. C. Greubel_, Jul 15 2018 %o A159872 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(16/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 15 2018 %Y A159872 Cf. A009967 (denominators). %K A159872 sign,frac %O A159872 0,2 %A A159872 _N. J. A. Sloane_, Nov 12 2009