This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159883 #28 Sep 08 2022 08:45:44 %S A159883 1,28,-274,-66920,-1004084,255091088,12454154824,-1270601891552, %T A159883 -127812323590000,7175629349576128,1417946567012111584, %U A159883 -36215654642176309888,-17516100476867891291456,-30656862015230525822720,240058053822414522099649664,7175714947197201167276319232 %N A159883 Numerator of Hermite(n, 14/23). %H A159883 Vincenzo Librandi, <a href="/A159883/b159883.txt">Table of n, a(n) for n = 0..390</a> %H A159883 DLMF <a href="https://dlmf.nist.gov/18.9">Digital library of mathematical functions</a>, Table 18.9.1 for H_n(x) %H A159883 Simon Plouffe, <a href="http://vixra.org/abs/1409.0048"> Conjectures of the OEIS, as of June 20, 2018.</a> %F A159883 E.g.f.: exp(-529*x^2 + 28*x). - _Simon Plouffe_, Jun 22 2018; corrected by _G. C. Greubel_, Jul 11 2018 %F A159883 From _G. C. Greubel_, Jul 11 2018: (Start) %F A159883 a(n) = 23^n * Hermite(n, 14/23). %F A159883 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(28/23)^(n-2*k)/(k!*(n-2*k)!)). (End) %F A159883 D-finite with recurrence a(n) -28*a(n-1) +1058*(n-1)*a(n-2)=0. [DLMF] - _R. J. Mathar_, Feb 06 2021 %e A159883 Numerators of 1, 28/23, -274/529, -66920/12167, -1004084/279841, ... %t A159883 Numerator[Table[HermiteH[n, 14/23], {n, 0, 40}]] (* _Vincenzo Librandi_, Jun 23 2018 *) %t A159883 Table[23^n*HermiteH[n, 14/23], {n,0,30}] (* _G. C. Greubel_, Jul 11 2018 *) %o A159883 (PARI) a(n)=numerator(polhermite(n, 14/23)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159883 (PARI) x='x+O('x^99); Vec(serlaplace(exp(-529*x^2+28*x))) \\ _Altug Alkan_, Jul 30 2018 %o A159883 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(28/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..20]]; // _Vincenzo Librandi_, Jun 23 2018 %o A159883 (GAP) List(List([0..20],n->Sum([0..Int(n/2)],k->(-1)^k*Factorial(n)*(28/23)^(n-2*k)/(Factorial(k)*Factorial(n-2*k)))),NumeratorRat); # _Muniru A Asiru_, Jul 12 2018 %Y A159883 Cf. A009967 (denominators). %K A159883 sign,frac %O A159883 0,2 %A A159883 _N. J. A. Sloane_, Nov 12 2009